از ارتباط پروتینی جمعیت‌های گندم تانودار در ایران

على أكش فتحي نجف طاهری

 mest الخصائص

روش معمول بر تنفسیک و ارتباط پروتینی جمعیت‌های گندم موجود در طریق روش اندیشگاه جمعیت در زمین و مکان‌ها مخفی و توصیف و یزدی‌های مرحلاتی و فلوریستیکی آن افزایش در حین روش است. ارزیابی مرحلاتی و فلوریستیکی مدول را می‌توان با مطالعه مینیماینگ زنوم و تحلیل نشانگر Triticum بیوشیمیایی تکمیل نمود. پس از گروهی‌های فلوریستیکی جمعیت‌های گندم وحش تانودار Thaoudar Reut

داخل هر جمعیت و نیز در جمعیت‌های هفته‌گرد مذکور مورد بررسی قرار گرفت و از ارتباط پروتینی گروه‌های مذکور تعیین گردید. در بررسی گروه‌های الکتروفورژی، افزایش داخل هر جمعیت الکتروفورژی از نظر اینکه نارنجی مشاهده شدند ولی الکتروفورژی کاملاً متناقض بود. این اساس، مشابه پروتئین‌ها کاملاً بارز برای

گروه‌های مذکور بست‌امد.

واژه‌های کلیدی: گندم وحش، ارتباط پروتئینی، پروتئین دخیر، بذر

مقدمه

توابع زنیکی در افراد داخل یک جمعیت و یا جمعیت‌های مختلف یک گونه پایگاه وضعیت تکاملی آن گونه می‌باشد. بطور کلی با به دنبال اینکه یک گونه اکنون از این تکامل یا اصلاً در آن گونه را مشاهده کنید در روش‌های معمولی

اصلاحی با توصیف مرحلاتی و فلوریستیکی مدل‌های داخل یک گونه میزان تکامل و تنویع موجود در آن گونه قابل بررسی است. در روش‌های معمولی ممکن است مرحلاتی الکتروفورژی و فلوریستیکی زیادی را با الگوی تنویعپذیری مطالعه کرد. صفاتی که در تدریج لایه از یافته در دانه شد تحت تأثیر میکروب و اثر مقاومت زن‌بیوپ و محیط می‌باشد. در این صفات دیگر نیز تعداد بالای نارنجی و بررسی آنها نیز به آزمون‌های مکر دارد. با استفاده از تحلیل نشانگر جدید بیوشیمیایی و مطالعه مینیماینگ زنوم‌ها می‌توان مطالعه تنویع مرحلاتی و

مکاتبه کننده: علی اکرم فتحی نجف طاهری
ناکل، گندم زراعی از جنبه‌های مختلف بوشیلیکو و
فلورستیک نیازمند بررسی است. لذا در این تحقیق به عنوان
یک اقیانسیای نسبت به هنگامی‌های زیست‌محیطی گروه‌های
گندم نادداز پراکنده در کشور می‌آید.

مواد و روش‌ها

در جریان یک مطالعه به دستور سه ساله (1376-1378) که بر
روی چند روشگاه گندم نادداز در گربه و غرب ایران
انجام گرفت، هفت گروه فلورستیکی در بین جمعیت‌های این
گیاه مشخص شدند (شلف و جدول 1). به منظور مطالعه میزان
تشابه گروه نواری بر روی آن‌ها در دو گروه دوگانه‌ای
با یکدیگر مقایسه گردیدند. در مراحل بعدی، در هر یک از
گروه‌های هفت گانه فوق الذکر، پروتئین‌های به علم
مخلوط و گلو نواری مخلوطی سه تایی در هفت گروه مورد
مقایسه قرار گرفتند.

استخراج پروتئین به روش تغییر بافت لامب (11) انجام شد.

نتایج و جملات

چنانچه در شکل 1 مشاهده می‌شود، صد زیست‌گاه‌ها که در
هفت گروه فلورستیکی برای یکدیگر ترتیب دقت
چرایی‌بندی برخوردار نمی‌باشند. با این وجود، در هر گروه بیشتر
زمین‌های متنقل به محدوده چرایی‌بندی می‌باشند. به طور
کلی می‌توان گفت که در هر گروه زیست‌گاه‌های مشابهی جای
دارند که تکیه گذاشتن آنها به هم نشان‌دهنده است. در بررسی
الگوی اکتشافی، افراد داخل هر گروه گلو پروتئینی
ترکیب مشابهی داشتند (شلف 1). لی الگوی نواری مربوط به
گروه‌های هفت گانه فلورستیک به طور کلی از یکدیگر متفاوت
بدوند. به طوری که هر گروه مکملی یا مشابه در پروتئین بارز و
مشخص را ارائه داده (شلف 2).

در مطالعه الگوی نواری پروتئین گلاب، فقط نوارهای
حاوی وزن مولکولی بالا نا متوازن مورد استفاده قرار گرفت
(25 نوار). به طوری که فلورستیک‌ها 2 و 3 این یک گروه واقع
شدند، بقیه گروه‌ها هر یک دسته مشابهی را به خوبی اختصاص
دادند (شلف 1). بطور متوازن تعداد نوار در گروه معادل
6/427.

1. Tris
2. Sodium Dodecyl Sulfate
3. Comassie blue R-250
4. Glycerol
5. Electrode buffer
6. Glycine
7. Trichloric acetic acid

8. Binary matrix
9. Unweighted Paired Group Method Arithmetical Average
جدول 1- رویشگاه‌های هفته‌گانه گندم تناندار

| اثر | برخی از روآب‌ها | صرف شده | تعداد
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>پیوسته (1) - سرباز (1) - نورآباد (1) - ابوزه (1)</td>
<td>- سرباز (1) - پیوسته (1)</td>
<td>- سرباز (1) - پیوسته (1)</td>
</tr>
<tr>
<td>II</td>
<td>مرزی - بیرانشهر (1) - گازرده (1) - سرباز (1) - نورآباد (1) - ابوزه (1)</td>
<td>- سرباز (1) - پیوسته (1)</td>
<td>- سرباز (1) - پیوسته (1)</td>
</tr>
<tr>
<td>III</td>
<td>مرزی - دیوان دره (1) - دیوان دره (1) - دیوان دره (1) - دیوان دره (1)</td>
<td>- سرباز (1) - پیوسته (1)</td>
<td>- سرباز (1) - پیوسته (1)</td>
</tr>
<tr>
<td>IV</td>
<td>مرزی - خرم اباد (ملاهوی) - شیر (شیر) - گازرده (شیر) - دیوان دره (شیر)</td>
<td>- میانه (1) - کلیپر (1)</td>
<td>- میانه (1) - کلیپر (1)</td>
</tr>
<tr>
<td>V</td>
<td>- گازرده (1) - کرمشاه - رونسر (1) - رونسر (1) - امیرآباد - سپیدشت</td>
<td>- هرود (1) - هرود (1) - هرود (1)</td>
<td>- هرود (1) - هرود (1) - هرود (1)</td>
</tr>
<tr>
<td>VI</td>
<td>- سیمر (1) - پاسور - سیمر (1)</td>
<td>- میانه (1) - کلیپر (1)</td>
<td>- میانه (1) - کلیپر (1)</td>
</tr>
<tr>
<td>VII</td>
<td>- میانه (1) - کلیپر (1)</td>
<td>- میانه (1) - کلیپر (1)</td>
<td>- میانه (1) - کلیپر (1)</td>
</tr>
<tr>
<td>VIII</td>
<td>- میانه (1) - کلیپر (1)</td>
<td>- میانه (1) - کلیپر (1)</td>
<td>- میانه (1) - کلیپر (1)</td>
</tr>
</tbody>
</table>

کمترین تعداد متعلق به گروه 5.0 به مطالعه خاکب_nd wordt de tekst gedateerd 1380 شده است.

کمترین تعداد متعلق به گروه 5.0 به مطالعه خاکبندی جدید 1380 شده است.

(جدول 2.

استفاده از الگوهای توابع پروتئینی در مطالعات سیستماتیک، بر این فرض استوار است که پروتئین‌های مختلف در صورت داشتن حسکی یافته در داخل زل، به‌هم مشابهند و از رگ‌آمیزی نادریابی با عرض و شدت بکران تولید می‌گردد. بر این فرض، صورت به نحوی که یک زنگ تأیید می‌گردد. گروه‌پردازی به‌صورت آنتی‌ژنیک یافت و الگوهای پروتئینی توانسته باعث افزایش یک‌افزارهای نشان‌گذار رونمایی‌های اختلافات وراثی مقنن در بین گروه‌های مورد مقایسه است.

1. Avena
2. Festuca
بنی ستوام، ساکاروم، نرپسکوم و درث هر کدام یک گزارش وجود دارد که به ترتیب در آنها ۳، ۱۰۰، ۵۰، ۵۱ و ۳۹۷ نمونه شناسایی شده است در خصوص جنس هوردوئوم، جهانگر شما و دو گزارش و یک گزارش به متوسط ۱۱ نمونه، جاواار سه گزارش و متوسط ۲۵ نمونه و ترینیتی که دو گزارش و متوسط ۱۵۴ نمونه بررسی و شناسایی قرار گرفت است (۱)。

گسترده‌ترین تکنیک برای توصیف بیوشیمیایی جمعیت‌های گیاهی، روش‌های الکتروفورز پروتئین است (۵). کاربرد، این روش‌ها نسبت به سایرین در جمعیت‌گیاهی بسیار بیشتر است. برای این منظور هم پروتئین‌های آنزیمی و هم غیر آنزیمی استفاده می‌شود. روش‌های الکتروفورزی می‌تواند بسیار مفید و گوناگون می‌باشد و می‌تواند باز آنها ارائه و سریع بودن اثبات‌ها، پروتئین‌های ذخیره ضمن داشتن بیلی‌موفیسم زیاد بسیار با نیازان. در بیشتر رسانه‌ها، عوامل محیطی بر آنها پی تأثیر و یا تاثیر انگذشته، دارند. فاکتورهای محیطی یکنواخت بر حسب آنزیمی و یکنواخت بر حسب آنزیمی رابطه‌ای بین تاثیر و یا کم تأثیر دارند. تناقض‌گذاری الکتروفورزی پروتئین ذخیره به تهیه‌ای با سایر نشانگرها می‌تواند برای شناسایی جمعیت‌های گیاهی و ارقام خواهد بود (۷).

در مجموع می‌توان چنین نتیجه گرفت که به کارگیری مکانیسم‌های متعدد در بررسی پلی‌مورفیسم، دریافت‌های فوق‌العاده از انتقال زنده‌ها در اختیار قرار می‌دهد. الکتروفورز پروتئین‌ها بطور مناسب روش سیاسی مطمئنی است (۱۰) و تصویر دقيق تری را از وضعیت زنده‌ها ارائه می‌دهد.

۱. Pennisetum
۲. Seccharum
۳. Tripsacum
۴. Zca
۵. Hordeum
۶. Lclium
۷. Secale
۸. Triticum
REFERENCES

Protein Fingerprinting of *Triticum Thaoudar* Reut Populations in Iran

A.A. SHAHNEJAT-BUSHEHRI\(^1\) AND S.M. FAKHR TABATABAEI\(^2\)

1,2- Assistant Professor and Faculty member, Faculty of Agriculture, University of Tehran, Karaj, Iran.
Accepted. April 25, 2001

SUMMARY

The general approach to characterization and evaluation of populations involves cultivation of sub samples followed by investigation of their morphological and floristic description. Morphological and floristic study of population variability may be supplemented and usually surpassed by more direct evaluation of the genome by means of the analysis of biochemical markers. These approaches were pursued, using a floristic classification in which the Iranian wheat populations (*Triticum thaoudar*) fell into seven different groups. Thereafter, intrapopulation and interpopulation seed storage protein banding patterns were analyzed. Banding patterns of intrapopulations were observed to be the same. However, those of interpopulations were completely different, seven groups showing six distinct protein fingerprintings.

Key words: Wheat, Protein fingerprinting, Seed storage protein.