بررسی چندشکلی های DNA RAPD - PCR با استفاده از تکنیک
(Gossypium hirsutum L.)

کمال قاسمی یزدی، سیروس عیدی‌سمرایی، عبدالله‌پاداش حسین‌زاده و
بدرالدین ابراهیم سید‌بطابی

به ترتیب کارشناس ارشد، بیوتکنولوژی کشاورزی مؤسسه تحقیقات بنی کنور (کرمان)، استاد و استادیاران
گروه زراعت و اصلاح نباتات دانشکده کشاورزی دانشگاه تهران، کرج.

تاريخ پذیرش مقاله 79/1/31

خلخال

در این مطالعه، آنالیز جهت بررسی چندشکلی‌های DNA RAPD با استفاده از 10 آغازگر تصادفی 10 نکلوتیدی با استفاده از واکنش زنجیره‌ای پلیمر (PCR) به عنوان گرده، به وسیله آغازگر در هر نمونههای نباتی 13 آغازگر رایگان می‌شوند. جهت تعیین فاصله‌ای زنجیره‌ای DNA چندشکلی گروهی از دسته‌های زنجیره‌ای DNA UPGMA از آنالیز این فاصله بر اساس ضریب نسبت جاودانگی نشان داده که 14 نمونه در استیفاده شده کار کردند.

ژن‌شناختی‌های 2200-3000 با دلیل افزایش DNA در حالی که زوود شدن روتاژ‌های 10/2 تا 10/1 در حالت کو در دست آمده، خوشاوندی‌های زنجیره‌ای در میان داده‌های 15/15 و 25/15 بود. نتایج بدست آمده، خوشاوندی‌های زنجیره‌ای امکانی برای ساختن مسیرهای داشته باشد و زنجیره‌ای امکان‌پذیر. این نتایج به تحلیل روش نوکلئوتیدی‌های خوشاوندی‌های زنجیره‌ای اکثر ویژگی‌های مرکز پیش‌بینی آنها. نتایج نشان داد که آنالیز RAPD با استفاده از 10 آغازگر می‌تواند به شناسایی خوشاوندی‌های زنجیره‌ای در میان نتایج به‌صورت DNA RAPD, PCR و واژه‌های کلمی: پیش‌بینی، جدی‌تر

مقدمه

گیاه پیشنهادی‌های محور و قابل توجه رایج لیفی مصارف گوناگونی دارد و از نظر اقتصادی و تجاری دارای اهمیت فوقالعاده می‌باشد. هر چند تجربه تحلیل دراز عرفای مواد صنعتی با ایلام پیش موجب شده است که این گیاه اهمیت نقش خود را در دست کرده، ولی با این وجود، مصرف جهانی و مصرف زیر کشت آن افزایش یافته است و از نظر غذایی نیز به عنوان یک دانه روانی، محصول دوم جهان را

دارا می‌باشد (۱۲).
校友ی‌ها و شرک‌ها

در تیرماه ۱۳۷۷، بیش از ۲۹ زنی‌تیپ به آپلند (جدول ۱) ارائه شد. برای استفاده از مسئله تفتی‌کردن (گرگانیه) این زنی‌تیپ به مدت ۵ تا ۷ تیرگری، با فاصله پنج دقیقه در داخل گلدان‌هایی در گل‌خانه کشت گردیدند.

کنترل کیفیت، با استفاده از طیف جدیدی (روش DNA اسکریپتوماری) صورت گرفت. آگر نسبت A۲۶۰/A۲۸۰ در محدوده ۰.۸ تا ۱.۰ بود، نشان می‌داد که ذوب‌داری کافی صرفه‌جویی بر طبق روش استخراج DNA در داخل گلدان‌هایی بود. برای بررسی این موضوع، زنی‌تیپ‌ها از گل‌خانه کشیده شدند.

در محیط‌هایی که نشان می‌دادند که زنی‌تیپ‌ها در محدوده مورد نظر بودند، از اعداد مربوط به طبقه‌بندی نتایج حاصله میزان غلظت DNA نزول نشود. بررسی این موضوع با استفاده از PCR کمک کرد. در آزمایش‌های PCR بر میانی DNA RAPD نشان داد که زنی‌تیپ‌های فضای پایین‌تر از لیف گیاهان قابل انتخاب بودند.

NA: نتایج میزان غلظت DNA در محیط‌های با W, V, V, W در یک فرولوم.
جدول 1- تأثیر منشا و زیتونیت های جهانی بر استفاده مور مورد نظر در محلول قبیل مصرف

<table>
<thead>
<tr>
<th>منشا</th>
<th>زیتونیت</th>
<th>شماره</th>
</tr>
</thead>
<tbody>
<tr>
<td>ژیونان</td>
<td>Sindos - 80</td>
<td>80</td>
</tr>
<tr>
<td>امریکا</td>
<td>Early Mutagenesis</td>
<td>2</td>
</tr>
<tr>
<td>امریکا x امریکا</td>
<td>Varamin</td>
<td>3</td>
</tr>
<tr>
<td>امریکا x امریکا</td>
<td>Baktiegan</td>
<td>4</td>
</tr>
<tr>
<td>امریکا</td>
<td>Hopica x 349</td>
<td>349</td>
</tr>
<tr>
<td>امریکا x امریکا</td>
<td>Acala Sj2 x Sealand</td>
<td>6</td>
</tr>
<tr>
<td>امریکا</td>
<td>Acala Sj2 x 349</td>
<td>349</td>
</tr>
<tr>
<td>امریکا x امریکا</td>
<td>Sahel</td>
<td>10</td>
</tr>
<tr>
<td>ازیستان</td>
<td>010</td>
<td>11</td>
</tr>
<tr>
<td>استرالیا</td>
<td>82203-189</td>
<td>12</td>
</tr>
<tr>
<td>بلغارستان</td>
<td>Shirpan-539</td>
<td>13</td>
</tr>
<tr>
<td>اسپانیا</td>
<td>Tabidilla</td>
<td>16</td>
</tr>
<tr>
<td>ترکیه</td>
<td>Gukurovea-1518</td>
<td>15</td>
</tr>
<tr>
<td>پاکستان</td>
<td>B.557</td>
<td>17</td>
</tr>
<tr>
<td>در سرتاسر نیست</td>
<td>22041-6</td>
<td>18</td>
</tr>
<tr>
<td>استرالیا</td>
<td>Siokra-324</td>
<td>18</td>
</tr>
<tr>
<td>بلغارستان</td>
<td>Belitzvar</td>
<td>19</td>
</tr>
<tr>
<td>امریکا x بلغارستان</td>
<td>Coker x Bulgar</td>
<td>20</td>
</tr>
<tr>
<td>امریکا x امریکا</td>
<td>Hopica x C1211</td>
<td>21</td>
</tr>
<tr>
<td>امریکا x بلغارستان</td>
<td>Sahel x Bulgar</td>
<td>22</td>
</tr>
<tr>
<td>ازیستان</td>
<td>Tashkand-1</td>
<td>23</td>
</tr>
<tr>
<td>ترکیه</td>
<td>Nazili-84</td>
<td>24</td>
</tr>
<tr>
<td>بلغارستان</td>
<td>Bulgar-433</td>
<td>25</td>
</tr>
<tr>
<td>بلغارستان</td>
<td>Shirpan-603</td>
<td>26</td>
</tr>
</tbody>
</table>

* ساصل هیبریدی از 349 x Coker-100 Wilt x 539 x Coker-100 Wilt x حاصل از گونه کورکیک‌دار.
جدول 2: مقدار مواد مورد نیاز برای یک واکنش PCR 25 میکرولیتر

<table>
<thead>
<tr>
<th>مقدار اجزای واکنش (میکرولیتر)</th>
<th>مقدار لاژ باره نمونه (میکرولیتر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 (1/1X)</td>
<td>14/2</td>
</tr>
<tr>
<td>2/5 (1/1X)</td>
<td>2/5</td>
</tr>
<tr>
<td>2 (1/1X)</td>
<td>2</td>
</tr>
<tr>
<td>5/6 (1/1X)</td>
<td>0/6</td>
</tr>
<tr>
<td>0/5 (1/1X)</td>
<td>0/5</td>
</tr>
<tr>
<td>0/2 (1/1X)</td>
<td>0/2</td>
</tr>
<tr>
<td>جمع</td>
<td>20</td>
</tr>
</tbody>
</table>

تردام واکنشی داده‌ها (در جدول به همرخ که تنها نشانگر مربوط به تنها نشانگر M16X2Y انفسته شد و استفاده از جدول توافقات به کمک گردان داده‌ها (ربته بندی) صورت گرفت.

ملاحظه شناوی فلس از آنالیز امتیاز و در هر دو جدول با استفاده از الگوریتم تجزیه‌بندی 2 این آزمون نشان می‌دهد که جهت گروه بندی زنوتیب‌های مختلف پنه با استفاده از UPGMA و SSPE رسم گردید.

برنامه‌ای که برای دستگاه ترموساکلر در نظر گرفته شد، به قرار زیر بود:

<table>
<thead>
<tr>
<th>۱۴۵ شروع وارسیت سازی DNA</th>
<th>۲ دقیقه</th>
</tr>
</thead>
<tbody>
<tr>
<td>تک رشته‌ای شدن DNA</td>
<td>۱ دقیقه</td>
</tr>
<tr>
<td>اتصال آغازگر به DNA</td>
<td>۱ دقیقه</td>
</tr>
<tr>
<td>سطح آغازگر</td>
<td>۲ دقیقه</td>
</tr>
</tbody>
</table>

پس از تکمیل چرخه‌های دستگاه، نمونه‌ها بالاصله از دستگاه خارج گردید و در دمای ۱۵۰ درجه سانتی‌گرادی می‌شود. برای انجام الکتروفورز می‌تواند پیک اکریلامید با غلظت ۹% استفاده می‌شود. از این‌رو که الکتروفورز، زد لی به آرامی خارج شده و با استفاده از تئودوم برای بیان کردن غلظت ۰-۱۰ میلی‌گرم در لیتر به سطح مناسب، هر کمیت‌های سیاه و سبز آمیزی می‌گردد. سپس زد لی را رنگ زدایی نموده، با این حال نماشگر UV مشاهده و از آن عکس گرفته می‌شود.

به خاطر کمی بودن داده‌ها، نمودار جدول توافقات صورت و یک تشکیل گردید. این منظوره، برای گروه‌بندی زنوتیب‌های ابتدا مهاجرت باندی باندی‌ها را باکیفیت بوده و نسبت به زنوتیب ژل دارای نشانه پالی‌پرونید، با فیلتر کنس مایل بوده باعث چاپ شده در غلظت ۰-۲۵ میکرو‌فیلتر به عنوان مبدأ، اندازه‌گیری نمونه و سپس با استفاده از محاسبات آماری و
از 13 آغازگر که چندشکلی بیشتر، ضعیف بیشتر و قابلیت
تکراری بیشتری به‌لایه داشتند، در محاسبات آماری استفاده گردید. این
\(UB_{23}, UB_{18}, UB_{17}, UB_{16}, UB_{91}, UB_{79}, UB_{76}, UB_{74}, UB_{30}, UB_{29}, UB_{25},
UB_{96} \) و \(UB_{95}\)

الگوهایی باندی به دست آمده توسط آغازگر \(UB_{96}\) در شکل
یک نشان داده شده است. این آغازگر نسبت به بقیه آغازگرها تعداد

<table>
<thead>
<tr>
<th>جدول 3 - لیست آغازگرهای تصادفی 15 نوکلئوتیدی مورد استفاده</th>
</tr>
</thead>
<tbody>
<tr>
<td>آغازگر</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>CCT GGG TCC A</td>
</tr>
<tr>
<td>GGT GGC GGG A</td>
</tr>
<tr>
<td>CCT GGG CCT C</td>
</tr>
<tr>
<td>GGG CCC TTT A</td>
</tr>
<tr>
<td>CCC GCC TTC C</td>
</tr>
<tr>
<td>ACA GGG CTC A</td>
</tr>
<tr>
<td>CCG GCC TTA A</td>
</tr>
<tr>
<td>CCG GCC TTA C</td>
</tr>
<tr>
<td>CCG GCC TTC C</td>
</tr>
<tr>
<td>GGG GCC TTA A</td>
</tr>
<tr>
<td>GGG GCC TTA C</td>
</tr>
<tr>
<td>CCG GCC CCA A</td>
</tr>
<tr>
<td>GAG CAC CTG A</td>
</tr>
<tr>
<td>GAG CAC CAG T</td>
</tr>
<tr>
<td>GAG CAC TAG C</td>
</tr>
<tr>
<td>GAG CTC GTG T</td>
</tr>
<tr>
<td>GGG GGC TTG G</td>
</tr>
<tr>
<td>GGG TGG TTG C</td>
</tr>
<tr>
<td>GGG GGG TTG A</td>
</tr>
<tr>
<td>GGC GGC ATG G</td>
</tr>
</tbody>
</table>
شکل ۱- الگوهای یادبودی به دست آمده بر اساس آغازگر ۹۶UB M و CG-M متناظر. DNA-HindIII

\(\text{Size} \)

اندازه فاصله متناظر. زونوتیب شماره ۲۲ در زوپ ب تکرار نشد و بنابراین در زوپ دوم می‌تواند تکرار گردیده باشد.

<table>
<thead>
<tr>
<th>Case</th>
<th>Genotypes</th>
<th>Num</th>
<th>25</th>
<th>20</th>
<th>15</th>
<th>10</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Early Mut.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bakhtegan</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sahel</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Varamin</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sahel X Bulgar</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Coker X Bulgar</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Hopi. X C1211</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>A.Sj2 X 349</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>010</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Hopi. X 349</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>A.Sj2 X Sealand</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sicla-33</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Tabladilla</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>82203-189</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Chirpan-539</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Chirpan-603</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Gukurova-1518</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Bulgar-433</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Belizofar</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Nazili-84</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Sindos-80</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Taskand-1</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Crema-111</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>22041-6</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>B. 557</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Siokra-324</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

شکل ۲- دنبالگر مربوط به ۲۲ زنوتیب پنجه آلپن، تولید شده از وارداتی RAPD با استفاده از UPGMA. مقیاس بر اساس ضرایب تشابه جاکارد می‌باشد.
شکل 3 - هیستوگرام فرآیند مسطح مجموع بندبندی 13 آغازگر مورد بررسی در محدوده‌های اندازه‌گیری

عامی، درصد سطح مقیاسی و بازی و تغییرات آن در هر آغازگر را به‌همراه تعداد نقاط صدمه‌های دوم و تعداد سطح نرمال مربوط به هر آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه صدمه‌های 14 آغازگر، 100% بود. همچنین درصد سطح نرمال مربوط به باعث آغازگر مورد مطالعه قرار گرفت. مجموع سه‌گانه ص
شیران - ۵۲۹، شیران - ۲۰۶، سیلگر - ۴۳۷ و سه آیواز از بلغارستان، دو زنوتیپ چکوروا ۱۵۱۸ و نازیلی - ۸۴ از ترکیه، سنیهوز - ۸۰ از پوتن و نانکند - ۱۸ از ایران است. مشخصه اصلی این گروه زودرس است، خصوصاً زنوتیپ های شیران که خیلی زودرسند و در بوده کوچکی دارند. در مجموع زنوتیپ های موجود در این گروه از زنوتیپ های گروه اول زودرس ترند.

در گروه چهارم دو زنوتیپ قرار دارند که مشاهده می شود که در گروه اخیر ضمن ایسکی از لحاظ ملکولی در دو گروه مختلف قرار دارندند، از لحاظ مورفولوژیکی نیز خصوصیات کاملی مشابهی از یکدیگر و همچنین از رقم شاهد ساحل دارند. نتایج کلاسترینگ زنوتیپ ها بر اساس داده های RAPD گروه بندی مورد انتظار ما بر اساس اطلاعاتی که از منشأ این زنوتیپ ها نیز تأیید می کند. همچنین این نتایج صحبت آنالیز UPGMA با وجود ایسکی مسکن زنوتیپ های سی کالا - ۳۲ و سای کر - ۳۲۴ به معنای ۸۲۴ - ۱۸۹ و ۸۲۴ - ۱۸۹ استرالیاست، و یک در دو گروه هم به دلیل خصوصیات مورفولوژیکی بسیار متفاوتی که دارد، حسی از

شکل ۴ - نمودار تعداد گل باقی‌مانده بیش از ۲۱ گل‌گر

شکل ۴ - نمودار تعداد گل باقی‌مانده بیش از ۲۱ گل‌گر

شکل ۴ - نمودار تعداد گل باقی‌مانده بیش از ۲۱ گل‌گر

شکل ۴ - نمودار تعداد گل باقی‌مانده بیش از ۲۱ گل‌گر
مختلف قرار گرفته‌اند. این سه زننیت از لحاظ مورفولوژیکی نیز خصوصیات مشابهی از یکدیگر دارند. مولتیپلی و لین (11) نیز در یک مقاله جنی درمان از این یکه هیروسیسیا یک واژاک گذاشته‌اند که احتمال دارد این ارگانمایی‌هایی که درخورد همکاران در به‌طور واقعی سی‌تواند RAPD‌شناس دادن که آلایندی‌های این خوشاوندی‌های زننیتی در این مطالعه گسترش ویده‌ای از دمای بلندان به راه‌اندازی می‌انجامد.

بهترین نوع بررسی خوشاوندی در میان زننیت‌ها مانند RAPD خواهد بود که هم از اطلاعات مورفولوژیکی و هم از استفاده‌های (10). زننیت‌هایی که در این حیطه بررسی شده‌اند، به راست نمایی داده‌هایی و نظریه‌ای تقابلی بین بافت و بی‌بافت و بی‌پاتریاک و پاتریاک در سایه‌گونه‌ها و مطبوع این نوع به مرحله کشف یک رابطه در داشتن این شرایط دیگر نیز باید در نظر گرفته شود که این موضوع به ارائه ساختارهای مشابه در ساختار و راهکارهای بین دو گروه زننیت‌ها ممکن است. بنابراین می‌توان به تأثیر مثبت روابط این ساختارها اشاره کرد.

مراجع مورد استفاده

1. عبداللهی‌نژاد و س. م. انتخابات و تأثیرات چهار دانشگاه تهران. 352 صفحه.

K. GHASEMI BEZDI, C. ABD-MISHANI, A. HOSSEINZADEH and B. E. SAYED TABATABAEI

Researcher of Agricultural Biotechnology, Cotton Research Institute, Gorgan, Iran, Professor and Assistant Professor, Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Tehran, Karaj, Iran. Accepted April 19, 2000

SUMMARY

In this study, Random Amplified Polymorphic DNA (RAPD) analysis was used to investigate the polymorphisms of upland cotton genotypes. Twenty six genotypes were analyzed with 90 random decamer primers using the Polymerase Chain Reaction (PCR). Twenty one primers detected polymorphism in all the 26 cotton genotypes. A total of 237 bands were amplified, 219 of which (92.4%) were polymorphic. Thirteen primers, clearly polymorphic, were used to estimate the genetic distances between genotypes. Cluster analysis by unweighted pair group method of arithmetic means (UPGMA), after multivariate analysis using Jaccard's similarity coefficients, showed that 26 genotypes could be placed in six groups. Similarity matrix data revealed that genotypes 82203-189 and Siokra-324 are 10.4% similar while Early Mutagenesis and Bakhtegan are 43.6% similar. The coefficient of similarity of most of the other genotypes ranges between 15 and 35%. Results indicated a genetic relationship between genotypes of different origins including American and control Sahel cultivar. This relationship was probably due to similarity of the center of origin of these genotypes. In general, results indicated that the RAPD analysis is a powerful tool in detecting the genetic relationships between cotton genotypes.

Key words: Cotton, DNA, Polymorphism, RAPD, PCR