تأثیر سطوح متفاوت کود ازته و زمان مصرف آن بر روی عملکرد و اجزای عملکرد گندم بهره در شرایط محیطی تبریز

مسعود عزت احمدی، حمدادالله کاظمی، محمدرضا شکیبا و مصطفی ولیزاده
به ترتیب دانشجوی سابق کارشناسی ارشد، دانشیار، استادیار و استاد گروه زراعت
و اصلاح نباتات دانشکده کشاورزی دانشگاه تبریز
تاریخ پذیرش مقاله ۱۳۸۷/۸/۲۷

خلاصه

به منظور ارزیابی واکنش عملکرد و اجزای عملکرد گندم بهره در سطوح و زمانهای مختلف مصرف کود ازته، آزمایش در مزار زعفران ۱۳۷۳–۹۳ بر روی پرهای دائمی انجام گرفت. در دو طرح بول کلیه کاهش‌های اکدرنیتی کشاورزی قرار دارند و در اراضی کرک؛ به صورت کرک‌های خردنشده در قابل‌طور بروکه‌های کامل تصادفی در سه تکرار اجرا گردید. نتایج درصدی به پنج سطح کود ازته (مصرف ۸۰، ۱۰۰ و ۱۲۰ کیلوگرم ازت خاص در هکتار، و کرک‌های خرچنگ) به پنج زمان مصرف کود ازته [تراوی یک زمان کاشت (۱)، (T۱) تراوی یک زمان کاشت + دمیر در محله‌ی پنج‌نژاتری (T۲) تراوی یک زمان کاشت + دمیر در محله‌ی پنج‌نژاتری + سلول‌زنده (T۳) تراوی یک زمان کاشت + دمیر در محله‌ی پنج‌نژاتری + سلول‌زنده + دمیر در محله‌ی سال‌فرشته (T۴) تراوی یک زمان کاشت + دمیر در محله‌ی پنج‌نژاتری + سلول‌زنده + دمیر در محله‌ی سال‌فرشته + دمیر ازته (T۵) تراوی یک زمان کاشت + دمیر در محله‌ی پنج‌نژاتری + سلول‌زنده + دمیر ازته + دمیر ازته (T۶) تراوی یک زمان کاشت + دمیر ازته + دمیر ازته + دمیر ازته + دمیر ازته (T۷) تراوی یک زمان کاشت + دمیر ازته + دمیر ازته + دمیر ازته + دمیر ازته (T۸)] پذیرفته شدند. ارزیابی نتایج داده که از افزایش مصرف کود ازته، تعداد سلمه در آن برای میانگین سال منجمد بود. تعداد دانه در سال منجمد، عملکرد دانه، عملکرد بیولوژیک، عملکرد گندم به به طور مناسبی می‌تواند به کاهش‌های مختلف مصرف کود ازته، تعداد سلمه در آن برای میانگین سال منجمد بود. تعداد دانه در سال منجمد به مناسبی می‌تواند به کاهش‌های مختلف مصرف کود ازته، تعداد سلمه در آن برای میانگین سال منجمد بود. تعداد دانه در سال منجمد به مناسبی می‌تواند به کاهش‌های مختلف مصرف کود ازته، تعداد سلمه در آن برای میانگین سال منجمد بود. تعداد دانه در سال منجمد به مناسبی می‌تواند به کاهش‌های مختلف مصرف کود ازته، تعداد سلمه در آن برای میانگین سال منجمد بود. تعداد دانه در سال منجمد به مناسبی می‌تواند به کاهش‌های مختلف مصرف کود ازته، تعداد سلمه در آن برای میانگین سال منجمد بود. تعداد دانه در سال منجمد به مناسبی می‌تواند به کاهش‌های مختلف مصرف کود ازته، تعداد سلمه در آن برای میانگین سال منجمد بود.

واژه‌های کلیدی: کود ازته، گندم بهره، سطوح متفاوت کود ازته، و اجزاء عملکرد گندم بهره در شرایط محیطی تبریز

مقدمه
مدیریت مصرف کودهای شیمیایی، به ویژه کود ازته، اهمیت خاصی برخوردار می‌باشد. کمبود ازت موجب کاهش عملکرد کاهش پروتئین و افزایش کیفیت ناهوی گندم شده، و تولید آن باعث
تأثیر در رشد چتری، رشد رویی بیشتر، کاهش مقاومت به سرمایه‌های و در ورزشگاه بودن به انواع بیماری‌ها می‌گردد (۱)، (۵)، (۷)، (۱۰).
نقش ۱ مصرف ازت نیز در پژوهش‌های اخیر به دیلی بازه‌های مختلف گیاه در طول دوره رشد مورد توجه خاصی قرار گرفته است. نیازهای زیاد گیاه به این معنی از خصوصیات به عنوان یکی از مهم‌ترین عوامل در افزایش گیاهی ازت می‌باشد. سطح ارزش و تولید نیازهای زیاد گیاه باید به‌طور کلی برای طول دوره مصرف ازت مورد توجه قرار گیرد.

اثرات مصرف کود ازت در زمانی که به‌طور جدی به سایر اجزای گیاه ارجاع می‌دهد. افزایش تولید محصولات مصرف ازت در طول زمان مصرف کود ازت تاثیر تأثیر دارد. این اثر ماهیتی، به‌طور کلی می‌تواند به‌طور کلی برای طول دوره مصرف ازت مورد توجه قرار گیرد.

 sarcastic_text
برده شد. افزایش عملکرد دانه با مصرف ازت به دلیل افزایش تعادل دانه در واحد سلول و با هر دو صورت گرفت و واکنش انتخاب دانه نسبت به مصرف ازت عوامل مکوس بود و مصرف باقیمانده ازت در قبیل از افرشند سایر و گردنه فلسطینی نیز تولید به ترتیب کوچکتر و زیرگزین دانه را باعث گردید.

با توجه به اینکه ناحیه حاصل از پژوهش این فناوت است و به علاوه به تأمین ازت مورد نیاز گیاه اولیه و همچنین عامل در جهت افزایش تولید محصول با واقع در اراضی کرکدرک در یک مکان مشخص می‌باشد، نتایج حاضر با هدف تعیین نسبت و سطح کود ازت و بهترین زمان مصرف آن جهت دست‌یابی به حداکثر عملکرد و کیفیت بر روی یک رقم از گندم به تام قصد انجام گرفته است.

مواد و روش‌ها

این برسی در شرایط قطبی و گرمایشی زمین‌شناسی‌ها و پیشگیری از اثرات کربن دی‌اکسید در 12 کیلومتری شرق تبریز انجام گردید. از اندازه‌گیری‌های تعداد دی ریا 1360 متر و مختصات جغرافیایی آن به ترتیب ۴۸°۳۶ طول شرقی و ۱۰۳°۲۸ عرض شمالی نیز و شرایط ورودی برای اجرای تحقیق و شرایط فناوتیک با توجه به شرایط آب و هوا برای بررسی تأثیر افزایش تعادل دانه به تأمین ازت مورد نیاز گیاه اولیه و همچنین عامل در جهت افزایش تولید محصول با واقع در اراضی کرکدرک در یک مکان مشخص می‌باشد، نتایج حاضر با هدف تعیین نسبت و سطح کود ازت و بهترین زمان مصرف آن جهت دست‌یابی به حداکثر عملکرد و کیفیت بر روی یک رقم از گندم به تام قصد انجام گرفته است.

مشخصات حاکمیتی و شرایط جوی محل آزمایش به ترتیب در جداول ۱ و ۲ مطرح گردیده است. طرح آزمایشی مورد استفاده کرده‌های خرد شده در قالب بالکه‌های کامل تصادفی به سه تکرار بود. کرده‌های اصلی به پنج سطح کود ازت از قبیل [صفر [N]]، [V(N)], [CN(N)], [N(N)] و [N(N)] (۱۰۰۰ کیلوگرم/تر) از تکرار خوراکی، [V(N)] و پنج کرده مربوط به [V(N)] و [CN(N)] و [N(N)] و [N(N)] و [N(N)] (۱۰۰۰ کیلوگرم/تر) و پنج کرده مربوط به [V(N)] و [CN(N)] و [N(N)] و [N(N)] و [N(N)] (۱۰۰۰ کیلوگرم/تر) و پنج کرده مربوط به [V(N)] و [CN(N)] و [N(N)] و [N(N)] و [N(N)] (۱۰۰۰ کیلوگرم/تر) و پنج کرده مربوط به [V(N)] و [CN(N)] و [N(N)] و [N(N)] و [N(N)] (۱۰۰۰ کیلوگرم/تر) و پنج کرده مربوط به [V(N)] و [CN(N)] و [N(N)] و [N(N)] و [N(N)] (۱۰۰۰ کیلوگرم/تر) و پنج کرده مربوط به [V(N)] و [CN(N)] و [N(N)] و [N(N)] و [N(N)] (۱۰۰۰ کیلوگرم/تر) و پنج کرده MSTAT-C مورد تجزیه و تحلیل قرار گرفت. مقایسه نتایج الهام‌رسان بود.
جدول ۱ - مشخصات خاکشناسی محل آزمایش

CEC (cM⁻³/kg)	pH	%N	%O_5	Mاده آلی (درک)	جرم‌آهنوسی	عمل شن	رس	%کلاس	قریب	ظاهری	ماده آلی ارکتل	%ژئوسی	%کلاس	٠/٧	(cm)		
١٥/٣٤	٥	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤	١/٤٤

جدول ۲ - مشخصات و شرایط جوی محل آزمایش از سال ۱۳۷۶ تا ۱۳۷۸

<table>
<thead>
<tr>
<th>پارامتر</th>
<th>میزان بارندگی (میلی‌متر)</th>
<th>حداقل رطوبت نسبی (درصد)</th>
<th>فردی کننده استریت خرداد</th>
<th>فردی کننده اربه‌ستانت خرداد</th>
<th>تئیتر میزان بارندگی</th>
<th>سال</th>
</tr>
</thead>
<tbody>
<tr>
<td>میزان بارندگی (میلی‌متر)</td>
<td>۷۹/۶</td>
<td>۷۹/۶</td>
<td>۷۹/۶</td>
<td>۷۹/۶</td>
<td>۷۹/۶</td>
<td>۷۹/۶</td>
</tr>
<tr>
<td>حداقل رطوبت نسبی (درصد)</td>
<td>۸۹/۶</td>
<td>۸۹/۶</td>
<td>۸۹/۶</td>
<td>۸۹/۶</td>
<td>۸۹/۶</td>
<td>۸۹/۶</td>
</tr>
</tbody>
</table>

شاریایت جوی محل آزمایش از سال ۱۳۷۶ تا ۱۳۷۸
نظرات عمده و همکاران تاثیر سطوح متفاوت کوکازه ...

5% انجام گرفت. همچنین، شکل‌های مربوط با استفاده از ترم انفزار QUATRO PRO کمپویتری 5 رسم گردیدند.

نتایج و بحث

فعلاً 1.اقسام آتی و ویا در طول فصل رشد از کاشت (اول)

اردهیت ماه. تا رسیدگی فیوزولوژیک داخلی گرفته شد. (اواخر مهر ماه)

تغییرات ماهان بر اساس محدوده 123 سیلی‌سیم برای کمک به رشد از مصرف گرفته شد. (2) متوسط ماهانه داده‌های‌اواخر ماه در دو فصل این گیاه بین 12/7 و 24/2 درجه سانتی‌گراد می‌باشد. به کمک به ترکیب ماههای اردهیت و مرداد لحاظ به شد. می‌باشد.

جدول 3. - تغییرات سطوح متفاوت کوکازه با اختلاف در سطوح متفاوت کوکازه

<table>
<thead>
<tr>
<th>مقدار کوکازه</th>
<th>میزان</th>
<th>شاخص‌های</th>
<th>تغییرات آزادی</th>
<th>تغییرات در مصرف</th>
<th>دیداری آزاد</th>
<th>دیداری در مصرف</th>
</tr>
</thead>
<tbody>
<tr>
<td>کلر</td>
<td>352796</td>
<td>3</td>
<td>2</td>
<td>1777/317</td>
<td>1/10</td>
<td>1/20</td>
</tr>
<tr>
<td>فسفات</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1777/317</td>
<td>1/10</td>
<td>1/20</td>
</tr>
<tr>
<td>بی‌لیومینولزیک</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1777/317</td>
<td>1/10</td>
<td>1/20</td>
</tr>
<tr>
<td>ماده‌های</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1777/317</td>
<td>1/10</td>
<td>1/20</td>
</tr>
<tr>
<td>1844</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>1/10</td>
<td>1/20</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/10</td>
<td>1/20</td>
<td></td>
</tr>
<tr>
<td>312</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/10</td>
<td>1/20</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/10</td>
<td>1/20</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1/10</td>
<td>1/20</td>
<td></td>
</tr>
</tbody>
</table>

** درجه‌بندی نتایج منفی‌گر گزارش‌های مثبت است**.
جدول ۴- خلاصه تجزیه واریانس صفات مورد ارزیابی در گردنب رقم قداس تحت تأثیر سطوح منفیانده کود ازته و زمان مصرف آن (بدون احتساب شاهد)

<table>
<thead>
<tr>
<th>منبع</th>
<th>درجه آزادی</th>
<th>درجه دفرموم</th>
<th>تعداد نمونه</th>
<th>تعداد پاسخ‌دهنده در مرحله ۱</th>
<th>تعداد پاسخ‌دهنده در مرحله ۲</th>
<th>تعداد پاسخ‌دهنده در مرحله ۳</th>
<th>تعداد پاسخ‌دهنده در مرحله ۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>ذکر</td>
<td>۲</td>
<td>۳۰</td>
<td>۷۸</td>
<td>۶۶/۷۶/۶۴۳</td>
<td>۴۴/۲۴/۳۳۵</td>
<td>۴۴/۱۲/۳۲۱</td>
<td>۴۴/۱۲/۳۲۱</td>
</tr>
<tr>
<td>مقدار</td>
<td>۳</td>
<td>۳۰</td>
<td>۷۸</td>
<td>۶۶/۷۶/۶۴۳</td>
<td>۴۴/۲۴/۳۳۵</td>
<td>۴۴/۱۲/۳۲۱</td>
<td>۴۴/۱۲/۳۲۱</td>
</tr>
<tr>
<td>اشتباه اصلی</td>
<td>۲</td>
<td>۳۰</td>
<td>۷۸</td>
<td>۶۶/۷۶/۶۴۳</td>
<td>۴۴/۲۴/۳۳۵</td>
<td>۴۴/۱۲/۳۲۱</td>
<td>۴۴/۱۲/۳۲۱</td>
</tr>
<tr>
<td>زمان‌های مصرف</td>
<td>۴</td>
<td>۳۰</td>
<td>۷۸</td>
<td>۶۶/۷۶/۶۴۳</td>
<td>۴۴/۲۴/۳۳۵</td>
<td>۴۴/۱۲/۳۲۱</td>
<td>۴۴/۱۲/۳۲۱</td>
</tr>
<tr>
<td>مقدار</td>
<td>۱۲</td>
<td>۳۰</td>
<td>۷۸</td>
<td>۶۶/۷۶/۶۴۳</td>
<td>۴۴/۲۴/۳۳۵</td>
<td>۴۴/۱۲/۳۲۱</td>
<td>۴۴/۱۲/۳۲۱</td>
</tr>
<tr>
<td>اشتباه ابعاد</td>
<td>۳۲</td>
<td>۳۰</td>
<td>۷۸</td>
<td>۶۶/۷۶/۶۴۳</td>
<td>۴۴/۲۴/۳۳۵</td>
<td>۴۴/۱۲/۳۲۱</td>
<td>۴۴/۱۲/۳۲۱</td>
</tr>
<tr>
<td>اشتباه اسکیت</td>
<td>۹۴</td>
<td>۳۰</td>
<td>۷۸</td>
<td>۶۶/۷۶/۶۴۳</td>
<td>۴۴/۲۴/۳۳۵</td>
<td>۴۴/۱۲/۳۲۱</td>
<td>۴۴/۱۲/۳۲۱</td>
</tr>
</tbody>
</table>

* مقدار در سطح احتمال ۰.۰۵
* * مقدار در سطح احتمال ۰.۰۱
* * * مقدار در سطح احتمال ۰.۰۰۱
* ** به ترتیب به معنای دار و معنی‌دار در سطوح احتمال ۰.۰۵ و ۰.۰۱ می‌باشند.
* *** معنی‌دار در سطح احتمال ۰.۰۱ و ۰.۰۰۱
جدول 5- مقایسه مشابهی صفات مورد آزمایش در سطوح متفاوت کود ازته و زمان مصرف آن

<table>
<thead>
<tr>
<th>متغیر</th>
<th>تعداد اصلی</th>
<th>تعداد محاسبه</th>
<th>% دامنه</th>
<th>کمک‌کردن</th>
<th>درصد (بیزی)</th>
<th>(کیلوگرم/هکتار)</th>
<th>(کیلوگرم/هکتار)</th>
<th>(کیلوگرم/هکتار)</th>
<th>(گرم)</th>
</tr>
</thead>
<tbody>
<tr>
<td>سطوح ارتم</td>
<td>۱۸۰۳/۹/۹ D</td>
<td>۲۲/۴/۹ D</td>
<td>۲۴۹/۱/۸ D</td>
<td>۲۳۵/۱/۹۸ D</td>
<td>۱/۳۵/۹ A</td>
<td>۲۳/۳/۹ D</td>
<td>۲۴۷/۵/۹ D</td>
<td>۲۳/۳/۹ D</td>
<td>۲۱/۳/۹ D</td>
</tr>
<tr>
<td>-</td>
<td>۹۱۲۷/۸/۹ C</td>
<td>۴۲/۴/۹ A</td>
<td>۲۵۷/۱/۸ C</td>
<td>۲۴۱/۱/۹۸ C</td>
<td>۱/۲۵/۹ A</td>
<td>۲۶/۵/۹ C</td>
<td>۲۶/۵/۹ C</td>
<td>۲۶/۵/۹ C</td>
<td>۲۶/۵/۹ C</td>
</tr>
<tr>
<td>-</td>
<td>۱۲۳۶/۷/۱۹ B</td>
<td>۴۲/۴/۹ A</td>
<td>۵۵۶/۱/۸۷ B</td>
<td>۱/۳۵/۹۸ B</td>
<td>۱/۲۶/۵ A</td>
<td>۲۸/۴/۹ A</td>
<td>۲۸/۴/۹ A</td>
<td>۲۸/۴/۹ A</td>
<td>۲۸/۴/۹ A</td>
</tr>
<tr>
<td>-</td>
<td>۱۲۳۶/۷/۱۹ B</td>
<td>۴۲/۴/۹ A</td>
<td>۵۵۶/۱/۸۷ B</td>
<td>۱/۳۵/۹۸ B</td>
<td>۱/۲۶/۵ A</td>
<td>۲۸/۴/۹ A</td>
<td>۲۸/۴/۹ A</td>
<td>۲۸/۴/۹ A</td>
<td>۲۸/۴/۹ A</td>
</tr>
</tbody>
</table>

* در هر ستون تفاوت بین هر دو میانگین که دارای جدال‌کنکاری معنادار است به مشترک باشند، از نظر آماری معنادار است (آزمون دانکی ۵%)

جدول ۶ - ضرایب محاسبات نتایج مورد مطالعه

<table>
<thead>
<tr>
<th>منبع</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
</tr>
</thead>
<tbody>
<tr>
<td>نتایج کلی</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>تعداد رتبه</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>زمان مصرف</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>سطح دانه</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>تعداد سیلیل</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>تعداد دانه</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>سطح دانه</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>تعداد سیلیل</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>تعداد دانه</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
<tr>
<td>سطح دانه</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
<td>۱/۱۲</td>
</tr>
</tbody>
</table>

بیشترین عملکرد دانه دارای دانه‌بندی بوده است. برخی از پژوهشگران نتایج گیاه شدیداً با عملکرد دانه دارا را دارا می‌دانند. برخی از پژوهشگران نتایج مطابق با آگاهی کردن دانه‌بندی (۲۳ و ۲۴).
منی در آن‌هایم (جدول 5). افزایش تعادل بنیاد در مرحله مربع بر اثر مصرف کود از هر دلیل افزایش نتیجه به وقایع آنها بوده است. (داده‌ها منتشر نشده.) حقیقت دیگر نظر چنین نتیجه‌ها، را. گزارش نموده‌اند (5) و (9). و این اظهار داشتند که اثر بر روی منازیت‌های موقع در شرایط خام آونده، به‌طور سیاه‌پوش بست. انتساب، برای کود‌های ممکن است از طریق افزایش تولید سیلوتک، و افزایش تعداد بنیاد در واحد سطح بر اثر افزایش مصرف کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌باشد. این‌ها (جدول 6) از تاثیر مستقیم کود از هر دلیل افزایش نتیجه، در حالت می‌ба...
متر مربع با مصرف چهار کود ازته، ناشی از افزایش تعداد سیل بر متر مربع و تعداد دانه در سیل بر می‌باشد (جدول ۲ و ۳). بسیاری از محققان افزایش تعداد دانه در متر مربع با افزایش مصرف کود ازه در گزارش‌های مربوط به این موضوع بکار می‌برند (۱۲، ۱۳ و ۱۴). برای تخمین کود ازه بر تعداد دانه در متر مربع در سیل بر می‌باشد (جدول ۳). می‌تواند رابطه با میزان گازهای اشباع زرد، واز هزار دانه باشد. کاهش وزن هزار دانه با افزایش مصرف کود ازه توسط برخی از پژوهشگران گزارش شده است (۱۵، ۱۶ و ۱۷). اثر تغییرات کود ازه بر وزن هزار دانه در سطح اختلاف پیک در میزان درصد معنی‌داری بود (جدول ۴). مقایسه میانگین های مذکور حاکی از وجود اختلاف معنی‌دار بین آن‌ها می‌باشد (جدول ۵). زایدی وزن هزار دانه در تیمار ۲۱ می‌باشد. یافته‌ها در هر سطح باشد که در این حالت قابلیت دسترسی مواد فوسفوری بدن‌ها بیشتر داشته و برای واز هزار وزن هزار دانه در تیمار گفته شده است. علاوه بر این احتمالاً فرمود ازه از طریق دوسته پرده دانه با تأخیر در مصرف کود ازه می‌تواند باعث راه اندازی مواد فوسفوری شناخته کنند. بر اساس رابطه ای که در سطح مصرف کود ازه صرف، در سطح اختلاف می‌باشد در مصرف کود ازه با مصرف کود ازه در نمایش‌ها و باعث آنها افزایش ارتقاء واز هزار تیمار در سطح اختلاف معنی‌دار می‌باشد (جدول ۶). اثر تغییرات کود ازه بر روزی و نمایش‌ها نتیجه خلاصه با نتیجه‌های سیاست‌های پیش‌بینی و جهت مطالعات دارد (۸ و ۱۵ و ۲۵). اثر تغییرات کود ازه بر مصرف کوداکوپولیزیک در سطح اختلاف تیمار ۲۱ درصد معنی‌دار بود (جدول ۶). مصرف کوداکوپولیزیک با تأثیر ناشی از افزایش تعداد دانه در سیل بر می‌باشد (جدول ۶). افزایش تعداد دانه در سیل باعث افزایش برخی از واز هزار عامل کاهش باعث می‌شود که این مصرف کوداکوپولیزیک با تأثیر ناشی از افزایش تعداد دانه در سیل بر می‌باشد (جدول ۶).
کیلومتر در هر کمتر و بیشترین عضویت پروتئین را
درا و دندان. اثر گستردهٔ یک میزان معنی‌دار بود و در رویه‌های بین‌هاری گیری‌ها، سابقه‌های
گزارش‌های این مطالعه اشاره شده است که اثر
8 مطالعه‌های کلیه‌ای تغییرات در بافت و تغییرات
که با هر بیشتری در بافت شناخته شده، به دلیل تغییرات
که با هر بیشتری در بافت شناخته شده، به دلیل تغییرات
که با هر بیشتری در بافت شناخته شده، به دلیل تغییرات

10 یکی از مهم‌ترین هزینه‌های عمده‌ای که در مطالعه‌های

11 مطالعه‌های مختلف معنی‌دار بافت شناخته شده است. این

12 و 13 اثر تغییرات در بافت شناخته شده، به دلیل تغییرات

14 تغییرات در بافت شناخته شده است. این

15 و 16 بیشتری در بافت شناخته شده، به دلیل تغییرات

17 و 18 مثلاً تغییرات در بافت شناخته شده است. این

19 و 20 بیشتری در بافت شناخته شده، به دلیل تغییرات

21 و 22 بیشتری در بافت شناخته شده است. این

23 و 24 بیشتری در بافت شناخته شده است. این
می‌نماید. چنین که در جدول 7 دیده می‌شود پس از تعداد سمله در
متراکم، تعداد دانه سمله وارد مدل شد. با واردشدن صفت خطر به
مدل ضریب بین مدل‌های ۵/۹۸ به به ۹/۶ و سپس، وارد
کردن وزن هزار تن مدل تأثیر داشت. این مدل نشان داد که ارتباط
یافته تأثیر دیگری کمرنگ به مدل‌های آزمایش‌شده و ثابت
بیشتر در مقایسه با تعداد سمله در متراکم و تعداد دانه در سمله
می‌باشد. به عبارت دیگر، تغییرات علائم دانه تحت تأثیر تیمار

جدول 7 - رابطه علائم و افزایش علائم در دانه.

<table>
<thead>
<tr>
<th>تعداد سمله</th>
<th>تعداد دانه دانه در سمله</th>
<th>وزن هزار تن</th>
<th>ضریب بین (A)</th>
<th>نتیجه گیری</th>
</tr>
</thead>
</table>
| ۱۰۰ | ۲ | ۱۲۰ | ۹۷/۵ | بای توجه به نتایج حاصل به طور کلی می‌توان گفت که تا ۱۰۰ در سمله است. افزایش مصرف کود از تعداد این تیمارها بر تعداد سمله در
متراکم و در میانش مابین دانه و به طور تأثیر تیمار در دانه در سمله به
وجود آمده است و وزن هزار تن تغییری پذیری چندانی در مقابل
سمله مختلف کود از و زمان مصرف آن نداشت است.

نتیجه گیری

با توجه به نتایج حاصل به طور کلی می‌توان گفت که تا ۱۰۰
علمکرده دانه شیر را در سطوح بالایی کود از مصرف
می‌توان افزایش تعداد دانه در متراکم و تعداد دانه در سمله نسبت
دانه. همچنین، علمکرده دانه بالا بر اثر تیمار ۱، ناشی از تعداد دانه در متوسطی بود.

مراجع مورد استفاده

۱. امامی، م.،: ۱۳۷۳، مقدماتی بر فیزیولوژی علمکرده گیاهان زراعی (ترجیم). انتشارات دانشگاه شیراز.
۲. جغرافی، ع.،: ۱۳۷۳، تربیت محیط و و.، نویسندگان. ۱۳۷۶، تغییرات پایدار طریق تحقیقاتی مطالعاتی تخصصی ۱۸ هکتار از اراضی و حاکمیت
۳. انیزه، ح.،: ۱۳۷۵، مبانی فیزیولوژیکی اصلاح نباتات (ترجیم). انتشارات جهاد دانشگاهی دانشگاه فردوسی مشهد.
۴. کاظمی، ح.،: ۱۳۷۵، زراعت خصوصی (جلد اول، غلات) مرکز نشر دانشگاهی تهران.

27 - Peltonen, J., 1992. Ear development stage used for timing supplemental nitrogen application to spring wheat, Crop Sci. 32:1029-1033.

Effect of Different Levels and Times of Nitrogen Application on Yield and Yield Components of Spring Wheat in Tabriz

M. EZZAT-AHMADI, H. KAZEMI, M. R. SHAKIBA
AND M. VALIZADEH
Former Graduate Student, Associate Professor, Assistant Professor, and Professor Respectively, College of Agriculture, University of Tabriz, Iran.
Accepted 30 Sep. 1998

SUMMARY

Effect of different times and levels of nitrogen application on growth and grain yield of spring wheat cultivar ‘Ghods’ was studied during 1993-1994 growing season at Karkadj, Agricultural Experiment Station, College of Agriculture, University of Tabriz, by using a split plot design with three replications. Main plots were assigned to five levels of N fertilizers (0, 40, 80, 120, and 160 kg/ha) and sub plots to five times of applications [all of N fertilizer at planting time (T₀), 1/2 at planting time + 1/2 during tillering stage (T₁), 1/2 at plantig time +1/2 during heading stage (T₂), 1/3 at planting time +1/3 during tillering and 1/3 at heading stages (T₃) and 1/4 at planting time +1/4 at tillering +1/4 at stem elongation and 1/4 at heading(T₄)]. Evaluation of results showed that No. of spikes/m², No. of kernel/spike, number of kernel/m², grain yield, biological yield and straw yield were increased significantly when higher levels of N fertilizer were applied, but thousand kernel weight and harvest index decreased, though insignificantly. The effect of split application of nitrogen on number of kernel/spike, grain yield, biological yield, straw yield, and harvest index was non-significant. The effect of times x levels interactions of nitrogen application on all traits under study were not significant. As a whole, application of 160 kg of nitrogen fertilizer/ha produced highest yield (5005.5 kg/ha), while its difference with 120 kg of nitrogen fertilizer/ha was not statistically significant. T₁, produced highest grain yield (4391.88 kg/ha), while it did not differ from T₀, T₂ and T₃ significantly. Higher grain yield, due to higher level of nitrogen fertilizer application, can be accounted for increased number of spike/m² and number of kernels/spike.

Keywords: Nitrogen Fertilizer and Spring Wheat, Nitrogen Fertilizer and Yield Components, Spring Wheat, Nitrogen, fertilizer, Time of Fertilizer Application.