بررسی ترکیب پذیری و نوع عمل دهنده در خاک کنجد با استفاده از روش دی آلل کراس (Sesamum indicum)

سعدالله منصوری و محمد رضا احمدی

به ترتیب کارشناس ارشد و استاد بیوشیما به تحقیقات دانه‌های روغنی مؤسسه تحقیقات اصلاح و تهیه نیال و بذر

تاریخ پذیرش مقاله 1387/7/27

خلاصه

به منظور بررسی و مطالعه اثرات ترکیب‌پذیری عضوی، خصوصی و نحوه عمل آلدها در 7 رقم کنجد از حيث صفات ارتفاع بونه، تعداد کسوف در بونه، وزن هزاردهره، عمق، بهره و درصد رغی از یک طرح تصادفی بود که کنجد 577

یک طرح تصادفی کرده و در 1352 بذر 2 روز پس از بهره و درصد، در قالب طرح های F1 (جمعه 3 روز تری) و کمک دارای اجرای 16 بود.

در سال زراعی بعد از بهره و درصد، مقدار متوسط (GCA و B) و کمک دارای اجرای 16 بود. پلاستیک بردی و کمک دارای اجرای 16 بود. برای 4 صفات دارای دوازده کنجد از حيث MS(GA) و MS(SCA)

کنجد در صفات دارای دوازده کنجد از where GCA و SCA در صفات دارای دوازده کنجدد کنجد 2 باره ای این صفات را از تولید نیای زیر ناپذیرفته با تأکید از انتخاب بیشتر و احتمالاً گروه‌های مختلف روغنی جهان است. این نتیجه در کنجد که به عنوان تیپ تولید رغی مطلوب خوارشی انتخابه می‌شود. کنجد دارای روغنی

با ارزیابی این کنجد که به سطحی و نوع رحم دارای 21 ارز دارد روغن پوده و روغن آن به دلیل وجود یک ترکیب ذهنی آنتی آسیدین

واژه‌های کلیدی: ترکیب پذیری، عمل دهنده در کنجد، دی آلل کراس، کنجد

مقدمه

کنجد یکی از قدیمی‌ترین گیاهان کنجد شده توسط بشر و

احتمالاً گروه‌های مختلف روغنی جهان است. این نتیجه در کنجد که به عنوان

منبع تیپ ارائه مطلوب خوارشی انتخابه می‌شود. کنجد دارای روغنی

با ارزیابی این کنجد که به سطحی و نوع رحم دارای 21 ارز دارد روغن پوده و روغن آن به دلیل وجود یک ترکیب ذهنی آنتی آسیدین

1 - Sesamol
نونهالان و همکاران (11) نشان دهنده قابلیت ترکیب‌پذیری عمومی و خصوصی می‌باشد که برای صفات ارتفاع بوته و عملکرد دانه و نیز کنترل این صفات با نوع فیزیولوژی عمل زنن‌سی باشد. در و همکاران (14) نتیجه‌گیری نموده که درصد رونق عموماً تخت کنترل عمل افزایش نمی‌کند.

خوروج و همکاران (16) اعلام نمودند که اثرات افزایش و گیاه‌افزایی رنج‌ها در دو کنترل صفات تعداد روز تامان رشدی نتیجه‌گیری می‌کند که دو کنترل گیاه و وزن هزارانه همگی می‌باشند.

انجام قابلیت اصلاح اطلاعات از ساختار زننیکی، چگونگی کنترل صفات توسط زننی و همچنین قابلیت ترکیب‌پذیری صفات را ضروری می‌نماید. به همین دلیل باید هدف بررسی قدرت ترکیب‌پذیری عمومی و نیز نحوه صفات توسط زننی به عنوان اصلی اصلاح در بررسی های اصلاحی و ساختاری اصلاح و انتخاب یافته‌های در انواع و همچنین انواع محصولات مختلف دارد.

گروه (GCA) و قابلیت ترکیب‌پذیری خصوصی (SCA) با استفاده از تلاقای های di-ال (2) و تلاقای طریق تعلیق تایپ کراس استفاده از این نتیجه‌گیری می‌گردد (12). به‌طوری‌که این کنترل در اصلاح کنترل صفات کم اندازه در اصلاح می‌گردد و نتایج سودمندی در اختیار می‌باشد.

مطالعات گروه و همکاران (1) نشان داد که واریانس قدرت ترکیب‌پذیری عمومی (GCA) و خصوصی (SCA) برای صفات ارتفاع بوته و وزن هزارانه همگی می‌باشند. این نتیجه‌گیری می‌گردد که درصد رونق عموماً تخت کنترل عمل افزایش نمی‌کند.

مواد و روش‌ها

این پژوهش در سال‌های 1379 تا 1377 در مزرعه تحقیقاتی مؤسسه اصلاح و بهینه‌سازی حیوانات بیانی مورد بررسی قرار گرفت. در بهار سال اول کشت از ارگان و دورگرگیری صورت گرفت. در این راستا از بذر لاکن کنترل: 124 بالاست. در تولید 12842 تولید کشاورزی، کرج 1309 نمونه جهت بررسی و توزیع کشاورزی مورد حجاب که در دارای تفاوت‌های زننی‌کیک و مورفولوژیکی می‌باشد. این استفاده گردد.

در تاسیس 1377 نمونه‌های ممکن به صورت دقیق تا آلیک طرح اصلاح در اولیا پایه‌های مهم سال بذور شده‌اند از بونه‌های زنن‌سی باشد. در بهار سال‌های (1373) بذر در حال و دید(1) .

1 - General Combining Ability (GCA) 2 - Specific Combining Ability (SCA) 3 - Diallel Crosses
4 - Top Crosses 5 - Additive Variance 6 - Non-additive variance
7 - Additive gene effects 8 - Non-additive gene effects 9 - Over dominance gene effects

نتایج: در تلاقای‌های زننیکی، کنترل صفات کم اندازه بوده و نتایج سودمندی در اختیار می‌باشد.
نتایج و بحث

میانگین خصوصیات ارزابیه هش و بالینی در جدول اول یافته گردیده است. براساس این نتایج، لایه‌های وارون و هیبریدیه ارتفاع بیشتر، وزن واردایش و تعداد کسپول بیشترند. از نظر اعداد و صفات زراعی مهم تغییر ارتفاع بوده، تعداد کسپول در بوده، وزن هزاراده، میزان روغن و در صد روغن براساس میانگین پنج بوده از ارزابیه شدند. دسته روغن‌پیمایی با استفاده از روش طیف سنجی بازتاب‌های مادون قمر نزدیک (مستگی‌ها) این تجربه شیمی‌بینی بخش تحقیقات دانش‌های روشی انجام شد.

تجزیه واریانس اوّلی براساس مدل آماری طرح بلوک‌های کامل تصادفی و نتیجه‌گیری از آن کرس براساس روش ۲ مدل مخلوط B که ضمن آن قدرت ترتیب‌پذیری عمومی و خصوصی‌ای از هر مشخصه موجود است و اثرات ترتیب‌پذیری عمومی برای هر ارتفاع (g) و ترتیب‌پذیری خصوصی برای هر هیبرید (Sj) با محاسبه آزمون مانگنیز بودن آنها با استفاده از توزیع نمایش گردید. این تجربه برای ترتیب‌پذیری عمومی واریانس قدرت ترتیب‌پذیری خصوصی و با استفاده از آزمون F نوع اثرات تقریبی وزن‌ها مشخص کرد. منابع داده‌ای این نسبت به مانند وجود اثرات آزمایش زن‌ها و عدم معنی‌دار بودن آنها نشان اثرات غیرقابل اندازه‌گیری (عجله و اثر متقابل) است.

جدول ۱ - میانگین صفات مورد بررسی در هفت لایه والد کجید

<table>
<thead>
<tr>
<th>وزن مواردآن</th>
<th>تعداد کسپول</th>
<th>ارتفاع</th>
<th>والدین</th>
</tr>
</thead>
<tbody>
<tr>
<td>(درصد)</td>
<td>(گرم)</td>
<td>در بوده</td>
<td>(سانتی‌متر)</td>
</tr>
<tr>
<td>50/00</td>
<td>31/79</td>
<td>77</td>
<td>90</td>
</tr>
<tr>
<td>50/21</td>
<td>33/50</td>
<td>74</td>
<td>87</td>
</tr>
<tr>
<td>50/62</td>
<td>23/23</td>
<td>127</td>
<td>130</td>
</tr>
<tr>
<td>28/67</td>
<td>27/31</td>
<td>120</td>
<td>124</td>
</tr>
<tr>
<td>50/17</td>
<td>24/28</td>
<td>111</td>
<td>115</td>
</tr>
<tr>
<td>27/61</td>
<td>20/20</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>28/33</td>
<td>25/20</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>1/29</td>
<td>6/20</td>
<td>98</td>
<td>101</td>
</tr>
</tbody>
</table>

- شاخص * و ** به ترتیب معنی‌دار در سطح ۵% و ۱%
ترکیب‌پذیری خصوصی صمت و منفی مشاهده شده است. به عضوان مثل در مورد صفت تعداد کمی در بوته ترکیبات (1) (6)، (7)، (8)، (9)، (10)، (11)، (12)، (13)، (14)، (15)، (16) و (17) ترکیب‌پذیری منفی و (2) (18) و (19) ترکیب‌پذیری منفی دارند. برای سایر صفات نیز ترکیبات مختلف با ترکیب‌پذیری منفی و منفی مشخص شده است.

در این ترکیبات برای ارتفاع بیشتر، تعداد کمی در بوته و وزن هزارالا منفی مشاهده شده که اثرات ترکیب‌پذیری عمومی به عنوان یک تغییر در ساختار بیشتر و همچنین به عنوان یک بسیاری از صفات متغیر است. به عضوان مثل در مورد صفت می‌تواند در بوته تعداد کمی در بوته و وزن هزارالا منفی مشاهده شده که اثرات ترکیب‌پذیری عمومی به عنوان یک تغییر در ساختار بیشتر و همچنین به عنوان یک بسیاری از صفات متغیر است.

اثرات ترکیب‌پذیری عمومی هر یک (یا) برای صفات مورد مطالعه که مورد آزمون ایزی قرار گرفته‌اند در جدول 4 نشان داده شده است. با توجه به جدول مذکور معلوم می‌شود که اثر ترکیب‌پذیری عمومی به عنوان یک تغییر در ساختار بیشتر و همچنین به عنوان یک بسیاری از صفات متغیر است.

مورد مطالعه که مورد آزمون ایزی قرار گرفته‌اند در جدول 4 نشان داده شده است. با توجه به جدول مذکور معلوم می‌شود که اثر ترکیب‌پذیری عمومی به عنوان یک تغییر در ساختار بیشتر و همچنین به عنوان یک بسیاری از صفات متغیر است.

مورد مطالعه که مورد آزمون ایزی قرار گرفته‌اند در جدول 4 نشان داده شده است. با توجه به جدول مذکور معلوم می‌شود که اثر ترکیب‌پذیری عمومی به عنوان یک تغییر در ساختار بیشتر و همچنین به عنوان یک بسیاری از صفات متغیر است.

مورد مطالعه که مورد آزمون ایزی قرار گرفته‌اند در جدول 4 نشان داده شده است. با توجه به جدول مذکور معلوم می‌شود که اثر ترکیب‌پذیری عمومی به عنوان یک تغییر در ساختار بیشتر و همچنین به عنوان یک بسیاری از صفات متغیر است.

مورد مطالعه که مورد آزمون ایزی قرار گرفته‌اند در جدول 4 نشان داده شده است. با توجه به جدول مذکور معلوم می‌شود که اثر ترکیب‌پذیری عمومی به عنوان یک تغییر در ساختار بیشتر و همچنین به عنوان یک بسیاری از صفات متغیر است.
جدول 2- خلاصه تجزیه واریانس اولیه برای صفات مورد بررسی در والدین و هیریدهای کنجد

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجات آزادی</th>
<th>میانگین مربوطات</th>
<th>درصد روغن</th>
<th>تعداد کپسول درونه</th>
<th>وزن هزارادانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>بلول</td>
<td>3</td>
<td>27/252</td>
<td>6/377</td>
<td>0/0</td>
<td>0/042</td>
</tr>
<tr>
<td>زنوت</td>
<td>27</td>
<td>118/347</td>
<td>119/098</td>
<td>0/0</td>
<td>0/042</td>
</tr>
<tr>
<td>خطا</td>
<td>88</td>
<td>81/304</td>
<td>113/073</td>
<td>0/0</td>
<td>0/042</td>
</tr>
</tbody>
</table>

* ** به ترتیب معنی‌دار در سطح 5% و 1%.

جدول 3- خلاصه تجزیه واریانس دی آنال برای صفات مورد بررسی

<table>
<thead>
<tr>
<th>منابع تغییرات</th>
<th>درجات آزادی</th>
<th>میانگین مربوطات</th>
<th>درصد روغن</th>
<th>تعداد کپسول درونه</th>
<th>وزن هزارادانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>ترکیب پذیری عامی (GCA)</td>
<td>6</td>
<td>71/102</td>
<td>67/527</td>
<td>0/0</td>
<td>0/042</td>
</tr>
<tr>
<td>ترکیب پذیری خصوصی (SCA)</td>
<td>21</td>
<td>22/170</td>
<td>33/422</td>
<td>0/0</td>
<td>0/042</td>
</tr>
<tr>
<td>خطا</td>
<td>88</td>
<td>88/105</td>
<td>118/073</td>
<td>0/0</td>
<td>0/042</td>
</tr>
</tbody>
</table>

* ** به ترتیب معنی‌دار در سطح 5% و 1%.

جدول 4- میزان ترکیب پذیری عمومی (g1) یا هر که مورد بررسی برای صفات مورد مطالعه

<table>
<thead>
<tr>
<th>والدین</th>
<th>درصد روغن</th>
<th>تعداد کپسول درونه</th>
<th>وزن هزارادانه</th>
</tr>
</thead>
<tbody>
<tr>
<td>داراب</td>
<td>12/14</td>
<td>3/242</td>
<td>4/025</td>
</tr>
<tr>
<td>پاناما</td>
<td>12/14</td>
<td>3/242</td>
<td>4/025</td>
</tr>
<tr>
<td>نازکشانه</td>
<td>1/256</td>
<td>4/025</td>
<td>4/025</td>
</tr>
<tr>
<td>کرج</td>
<td>29/0</td>
<td>4/025</td>
<td>4/025</td>
</tr>
<tr>
<td>مقامه به رزش</td>
<td>2/143</td>
<td>4/025</td>
<td>4/025</td>
</tr>
<tr>
<td>نازکشانه</td>
<td>1/256</td>
<td>4/025</td>
<td>4/025</td>
</tr>
</tbody>
</table>

* ** به ترتیب معنی‌دار در سطح 5% و 1%.
| هیبریدها | ارتقاپیوئه | تعادلکپیوئه | وزن‌هزارهای عملکردکپیوئه درصد‌ویگن | نتایج

(1) پاناما × داراب 12
(2) ورامین 2824 × داراب 14
(3) نازچندشاخه × داراب 14
(4) کرج 29 × داراب 14
(5) مقاوم به رویه × داراب 14
(6) نازچندشاخه × ورامین 14
(7) ورامین 2824 × پاناما
(8) نازچندشاخه × پاناما
(9) کرج 29 × پاناما
(10) مقاوم به رویه × پاناما
(11) نازچندشاخه × پاناما
(12) نازچندشاخه × ورامین 2824
(13) کرج 29 × ورامین 2824
(14) مقاوم به رویه × ورامین 2824
(15) نازچندشاخه × ورامین 2824
(16) کرج 29 × نازچندشاخه
(17) مقاوم به رویه × نازچندشاخه
(18) نازچندشاخه × نازچندشاخه
(19) مقاوم به رویه × کرج 29
(20) نازچندشاخه × کرج 29
(21) نازچندشاخه × مقاوم به رویه
S.E.(Sij)

* و ** به ترتیب معنی‌دار در سطح 5% و 1%
جدول ۶- نتیجه‌گیری و اراییسی ترکیب‌های بذریعی عمومی به خصوصی، نوع عمل زن، بهترین ترکیب شونده عمومی و بهترین ترکیب برای صفات مورد بررسی

<table>
<thead>
<tr>
<th>بهترین ترکیب</th>
<th>بهترین ترکیب - شونده عمومی</th>
<th>نوع عمل زن</th>
<th>صفات</th>
<th>ستون (GCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ورامین ۱۴×پاناما)</td>
<td>ورامین ۲۸۲۲</td>
<td>اناریسی</td>
<td>ارتفاع گیاه</td>
<td>۶/۱۵۰۸</td>
</tr>
<tr>
<td>(کرج ۲۹×دراز)</td>
<td>پاناما</td>
<td>اناریسی</td>
<td>تعداد کیسه در گیاه</td>
<td>۴/۸۱۰۰</td>
</tr>
<tr>
<td>(نیکان‌بندانه×ورامین ۲۸۲۲)</td>
<td>ورامین ۲۸۲۲</td>
<td>غیراناریسی</td>
<td>وزن زردها</td>
<td>۷/۸۸۰۰</td>
</tr>
<tr>
<td>(نیکان‌بندانه×کرج ۲۹)</td>
<td>پاناما</td>
<td>اناریسی</td>
<td>عملکرد تک بونه</td>
<td>۴/۷۰۱۰</td>
</tr>
<tr>
<td>(مقاوم به ریزت×دراز ۱۴)</td>
<td>پاناما</td>
<td>اناریسی</td>
<td>درصد روحان</td>
<td>۴/۸۹۲۵</td>
</tr>
</tbody>
</table>

سه‌گزاری

همچنین از جنبه آقای دکتر عباس گرامی و آقای مهندس سید باقری میرفرخی که در اجرای این مطالعه همکاری بی‌شناخته نموده‌اند، قدردانی می‌گردد.

پژوهشی دانشگاه تربیت مدرس و مؤسسه تحکیم‌اتصالات و تهیه نهال و بذر تأمین گردیده است که به دین و سیمای نهال تکریم و تجلیل.

REFERENCES

1. احمدی، م.ر،، و گلپی، ه. زنبکی و روش‌های اصلاح سویا، بادامزمینی و کمجمه، مؤسسه تحقیقات اصلاح و تهیه نهال و بذر، شورای انتشاراته.
2. الهامی، ب. و امیری، م. دی آن و استفاده آن در اصلاح نباتات انتشارات دانشگاه شهید جهرم اهواز.
3. مقدم، م، و ۱۳۵۷، جزو نتایج اصلاح نباتات تکمیلی، دانشکده کشاورزی دانشگاه تربیت مدرس.

 combining ability in Sesame. Sesame and safflower newsletter. No. 4: 15-17.

 safflower newsletter. No. 9: 7-12.

Study of Combining Ability and Gene Effect on Sesame Lines
by Diallel Cross Method

S. MANSOURI AND M.R. AHMADI
Master of Science and Professor of Oil Crops Research Department,
Seed and Plant Improvement Institute, Karaj, Iran.
Accepted 29 Oct. 1997

SUMMARY

General and specific combining ability and gene effects among seven sesame lines were studied using a diallel design. The characters evaluated included: Plant height, number of capsules per plant, weight of one thousand seeds, yield per plant and percentage of oil content. Parental seeds were sown and all possible crosses made in summer of 1993. In the following year 21 hybrid seeds with seven parental lines (28 genotypes) were sown in a complete randomized block design at the Seed and Plant Improvement Institute of Iran, located at Karaj. Preliminary analysis of variance showed that there were highly significant differences for all traits (P < 1%). The analysis were performed based on second method of Griffing, Mix B model for all of the traits. The variance of general combining abilities (GCA) for all traits were significant at 1% level. The \(\frac{MS(GCA)}{MS(SCA)} \) ratio was significant for all traits at 1% probability level except for the seed weight. It may be concluded that most of the genetic variance observed in plant height, number of capsules per plant, yield per plant and percentage of oil are due to additive gene action. However for the seed weight, the non-additive variance contributes mostly to the genetic variance. Because of the high additive gene action in the genetic variance of traits including plant height, capsules per plant, yield/plant and percentage of oil the probability of successful selection for these characters is high. Because of the non-additive gene action (Dominance and Epistasis) in the genetic variance of thousand seeds the chance of successful selection for this trait is not very high. In accordance with these results, sesame breeders can choose the best lines for the breeding programs as efficient as possible.

Key Words: Combining Ability, Gene effect, Sesame Line, Diallel Crosses Sesame